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Approach — Extract, strucTUralize, and DEcode
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Abstract—Piano cover generation aims to automatically trans-
form a pop song into a piano arrangement. While numerous
deep learning approaches have been proposed, existing models
often fail to maintain structural consistency with the original
song, likely due to the absence of beat-aware mechanisms or
the difficulty of modeling complex rhythmic patterns. Rhythmic
information is crucial, as it defines structural similarity (e.g.,
tempo, BPM) and directly impacts the overall quality of the
generated music.

In this paper, we introduce Etude, a three-stage architecture
consisting of Extract, strucTUralize, and DEcode stages. By pre-
extracting rhythmic information and applying a novel, simpli-
fied REMI-based tokenization, our model produces covers that
preserve proper song structure, enhance fluency and musical
dynamics, and support highly controllable generation through
style injection. Subjective evaluations with human listeners show
that Etude substantially outperforms prior models, achieving a
quality level comparable to that of human composers.

Index Terms—automatic piano cover generation, music gener-
ation, music information retrieval, automatic music transcription.

I. INTRODUCTION

Piano cover generation—the artistic rearrangement of a
song into a piano performance—is a popular form of musical
expression that thrives on social media and has grown into
a commercially viable field. Yet producing a high-quality
piano cover remains challenging, requiring both analysis of the
original song’s musical features (e.g., harmony and rhythm)
and sufficient music theory knowledge to create a coherent,
aesthetically pleasing arrangement.

Numerous studies [1]-[5] have explored Automatic Piano
Cover Generation (APCG) with deep learning. These meth-
ods often emulate the two-step creative process of human
composers: first analyzing music-theoretical features such as
harmony, melody, and rhythm, and then recombining them
to synthesize a new interpretation within the piano’s 88-key
range. Nevertheless, a substantial quality gap remains between
model-generated and human-composed covers, as reflected
in subjective evaluation scores, suggesting that the task’s
complexity and nuance have yet to be fully captured.

A closer examination reveals a key source of this quality
gap: prior models struggle to capture a song’s rhythmic and
structural framework. Their outputs frequently lack consis-
tency in rhythm, tempo, or time signature—with some models
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Fig. 1. The architecture of our proposed Etude framework, which comprises
three main components: an Extractor for the extract stage, a Beat-Detector
for the structuralize stage, and a Decoder for the decode stage.

[1], [4], [5] relying on time-based rather than beat-based
frameworks, resulting in off-beat notes and degraded quality.
We attribute this shortcoming to an architectural limitation:
because beat tracking is notoriously difficult in music infor-
mation retrieval (MIR), asking models to implicitly learn a
song’s structure while simultaneously extracting other musical
features creates a compounded challenge that undermines their
effectiveness.

To address this issue, we introduce Etude, a novel architec-
ture that builds upon the two-stage concept of PiCoGen [2],
[3], but further modularizes the task by explicitly separating
the beat detection process. As illustrated in Figure 1, the name
Etude reflects the model’s three distinct stages: the Extract
stage for extracting music-theoretical features, followed by the
strucTUralize stage for deriving the rhythmic framework, and
concluding with the DEcode stage where all features are com-
bined to generate the final output. The key advantages of our
approach are twofold. First, by explicitly extracting the rhyth-
mic framework, our model guarantees structural consistency
with the original song, which significantly enhances overall
quality and musicality. Second, our architecture allows for the
injection of specified styles, a feature that increases both the
controllability of the output and its practical application value.

In summary, by disentangling the learning of structure
from the generation of notes, Etude produces structurally
sound, stylistically controllable, and high-quality piano covers,
demonstrating state-of-the-art performance in extensive eval-
uations where it substantially outperformed previous methods
and achieved a quality closer to human-composed arrange-
ments. All code and audio demonstrations are available on
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Fig. 2. The overall architecture of Etude, where an Extractor derives harmonic features, a pre-trained Beat-Detector provides the rhythmic framework for
tokenization and de-tokenization, and a Decoder receives these inputs along with style prompts. The Extractor and Decoder are trained separately.

our project page.'

II. BACKGROUND

The task of Automatic Piano Cover Generation (APCG)
presents several unique challenges for deep learning models.
Among these, a primary requirement is the ability to compre-
hend long-term musical context spanning multiple measures
[6], which hinges on the development of an effective symbolic
music representation [7]. Furthermore, to enhance the model’s
practical utility and user control, incorporating mechanisms
from conditional music style transfer is essential [8].

Modern symbolic music generation is fundamentally built
on event-based representations. An early and intuitive ap-
proach is the piano roll, which encodes music as a 2D
pitch—time matrix and is well-suited to image-based models
such as CNNs [9]-[11]. However, it lacks explicit note-off
information, making it difficult to distinguish between long
sustained notes and repeated short notes [7]. Event-based
sequences, by contrast, use MIDI-like tokens (e.g., ‘Note On’
and ‘Note Off’) that are more explicit but come with limita-
tions: they struggle to represent rhythmic structure clearly, are
inefficient to model, and may produce artifacts such as hanging
notes. A major advancement came with REMI [12], which
introduced Bar and Position tokens to provide a metrical grid
for rhythm. While effective, REMI often generates very long
sequences, posing challenges for Transformer-based models.
To address this, the Compound Word (CP) representation
[13] was proposed, grouping related events into ‘words’ to
shorten sequence length. These beat-aware and compact rep-
resentations have proven crucial for enabling state-of-the-art
models like the Transformer to capture long-range musical
dependencies.

Beyond representation, controllable music style transfer
has emerged as a central research focus. Early work (e.g.,
[14]) adapted steerable architectures such as DeepBach [15]
for homophonic accompaniment style transfer. A persistent
challenge is the scarcity of aligned data, motivating predom-
inantly unsupervised approaches. VAE-based methods, such
as MIDI-VAE [8], addressed this by disentangling style in a
shared latent space with classifier guidance, while GAN-based
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frameworks, e.g., CycleGAN [16], leveraged image processing
techniques for symbolic genre transfer. More recent research
emphasizes attribute-based control, with systems like Muse-
Morphose [17], inspired by Music FaderNets [18], enabling
fine-grained manipulation of perceptual dimensions such as
rhythmic intensity and polyphonic density.

Although these techniques provide a strong foundation, their
application to APCG exposes several key challenges. PiCoGen
[2], [3] established the two-stage paradigm: extracting core
features from a song into a simplified intermediate represen-
tation and then generates a piano cover. However, this inter-
mediate step often acts as an information bottleneck, losing
much of the original audio’s nuance. Data alignment further
compounds the problem: strong-alignment methods [1] often
induce audio artifacts, whereas weak-alignment approaches [3]
remain limited by inaccuracies in beat-tracking. In contrast,
models like AMT-APC [4] utilize a more direct transcription
approach that captures richer features but often at the cost of
explicit high-level structural modeling.

A common limitation across these methodologies is the
lack of structural consistency. Data artifacts, information
bottlenecks, and the inherent difficulty of implicitly modeling
rhythm all contribute to failures in preserving the original
song’s thythmic framework—tempo, bar, and beat alignment.
This gap in structural integrity forms the central motivation
for our work.

III. METHODOLOGY

Our proposed framework, Etude, is designed to address the
key challenges in APCG, particularly in ensuring structural
consistency and enabling stylistic control. The architecture,
illustrated in Figure 2, modularizes the generation process into
three distinct stages: Extract, Structuralize, and Decode.

A. Extract Stage

The goal of the Extract stage is to overcome the information
bottleneck found in prior two-stage models [2], [3], which
often use simplified lead sheet [19] representations that lose
significant musical nuance. To address this, we produce a rich
and dense feature representation that captures all potentially
salient events from the source audio. Our Extractor’s archi-
tecture is adapted from the AMT-APC [4], which is based on



the hFT-Transformer [20]. We use the source audio as input
but modify the model’s loss sampling parameter (§™2X) to
encourage the transcription of a dense map of musical events
rather than a sparse, playable arrangement. The final output is
a MIDI-like feature sequence that provides a comprehensive
and detailed foundation for the Decoder.

B. Structuralize Stage

The Structuralize stage is central to ensuring structural cor-
rectness. Running in parallel with the Extractor, it employs a
pre-trained Beat-Transformer [21] to analyze the source audio
and extract the precise timings of all beats and downbeats.
This information forms a definitive rhythmic framework Fpq¢,
containing tempo, time signature, and measure boundaries,
that serves as an immutable structural ground truth for the
entire process. This framework underpins our decoupled ap-
proach: it provides all necessary metrical information for the
tokenization of symbolic data and the final reconstruction of
a structurally coherent MIDI file from the model’s output (see
Section III-D).

C. Decode Stage

The Decode stage employs a Transformer-based model to
synthesize the final piano cover. Its primary goal is to translate
the dense feature sequence (X) from the Extractor into the
target symbolic piano cover sequence (Y'), conditioned on a
set of style attributes that guide the arrangement process.

To teach the model this complex translation task, we employ
a bar-wise mix [2], [3], [22] training strategy. For each song,
the feature sequence X and target sequence Y are segmented
by measure and interleaved into a single sequence of the form
[X1,Y7, X5, Y5, ...]. To distinguish between the two sources,
each token is accompanied by a parallel Class ID (SRC for
feature tokens, TGT for target tokens). The model is trained
to predict the target bar Y;, using its corresponding feature
bar X; and the context of the preceding four mixed bars. This
four-bar context window is designed to capture the common
phrasing structures found in popular music, thereby enhancing
the musical continuity of the output.

To enable controllable generation and address the one-to-
many nature of the arrangement task, we introduce style
vectors that explicitly describe the relationship between a
feature bar (X;) and its corresponding target bar (Y;). We
designed three relative style attributes inspired by prior work
[17], [18] on controllable generation:

« Relative Polyphony: This measures the change in the
average number of notes per unique time event. It reflects
a shift in harmonic texture; for example, a high value
indicates a transformation towards denser block chords,
while a low value suggests a shift towards sparser textures
like arpeggios.

« Relative Rhythmic Intensity: This measures the change
in the density of rhythmic events over time. A higher
value results in a more complex and rhythmically active
phrase.

« Relative Note Sustain: This measures the change in the
average note duration, controlling the output’s articulation
character from legato (high) to staccato (low).

These relative attributes are calculated for every bar pair in
the training set and discretized into a small number of bins
based on their statistical distribution. During training and in-
ference, each token in a bar-pair sequence is assigned the three
corresponding style bin IDs for that bar. These IDs are then
passed through separate embedding layers, concatenated, and
projected by a linear layer to form a single style embedding
vector. This style embedding is added to the token and class
ID embeddings to form the final input to the Transformer
Decoder. This mechanism effectively conditions the entire
generation process on the desired stylistic transformation, al-
lowing for fine-grained, bar-level control over the final output’s
characteristics.

D. Data Representation

The choice of data representation is critical for the success
of a symbolic music generation model. While prior works
like Pop2Piano [1] used raw MIDI event sequences, which
are difficult for sequence models to learn, subsequent research
[2], [3] has gravitated towards more structured representations
[12], [13]. However, the standard REMI tokenizer, designed
for general-purpose music generation, includes tokens for
Tempo, Chord, and Velocity. We argue that for the
APCG task, forcing the Decoder to learn these attributes
introduces unnecessary complexity. For instance, tempo in-
formation is already explicitly handled by our pre-extracted
rhythmic framework (Fiey), while other attributes like chords
and velocity are not essential for learning the core structural
translation task that is our focus.

To address this, we designed Tiny-REMI, a minimal and
efficient token set tailored specifically for the APCG task.
Our representation consists of five token classes. Bar tokens
([BOS], [EOS]) are special tokens used to mark the beginning
and end of each measure. Pos is a metric-related token indi-
cating the 16th-note offset within a measure. The remaining
tokens are note-related: Note for note pitches (88 values),
Duration for note durations (10 common values based on
16th-note units), and Grace for representing grace notes
(£1 semitone). Figure 3 provides an example of a musical
measure tokenized in this format. By removing redundant
tokens, this minimalist vocabulary simplifies the learning task
for the Decoder, allowing it to focus solely on the relationship
between note events.

The encoding and decoding processes both rely on Fiey.
To encode a MIDI file, each note’s absolute onset time is
quantized and mapped to a relative Pos token within its
corresponding measure. The decoding process is the reverse:
the Decoder’s output sequence, which contains only relative
positional information, is rendered back into a standard MIDI
file by using Fpey to restore absolute timings, tempo, and
meter for each measure. This decoupled approach ensures that
the generated output is not only musically coherent but also
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Fig. 3. An example of Tiny-REMI tokenization, where the sequence is delimited by Bar [BOS] and Bar [EOS] tokens, and each note event group (Note

+ Dur) is preceded by a Pos token marking its relative position.

structurally sound and easily convertible to standard musical
formats like MIDI or MusicXML.

IV. EXPERIMENTS
A. Dataset

We collected a dataset of approximately 7,700 pop song
and piano cover audio pairs, primarily consisting of J-pop
and K-pop. To ensure data quality, we filtered out pairs with
a length difference greater than 30 seconds or a WP-std [5]
greater than 1.0. The remaining pairs were then synchronized
using the weakly-alignment method proposed in PiCoGen2
[3].2 Our final training dataset consists of 4,752 pairs, totaling
approximately 500 hours of audio. For evaluation, we curated
a separate test set of 100 songs not seen during training,
evenly distributed across four genres: C-pop, J-pop, K-pop,
and Western pop.

B. Training Details

Our framework’s two main components, the Extractor and
the Decoder, are trained separately.

o Extractor: We adapt the AMT-APC [4] architecture.
Unlike the original, which learns from multiple cover
versions of a single song, we use one-to-one pairings.
To encourage the model to produce a dense feature
map rather than a sparse arrangement, we do not use
style vectors and significantly lower the loss sampling
parameter (™*). The model was trained for 10 epochs
with a batch size of 2.

o Decoder: We use a GPT-NeoX [25] architecture with 8
Transformer layers, 8 attention heads, and a hidden size
of 512, totaling approximately 25.5M parameters. The
model was trained on sequences of up to 1,024 tokens.
We used the AdamW optimizer [26] with a learning rate
of 2 x 104, scheduled with cosine annealing after a 10
epoch linear warmup. The model was trained for 100
epochs with a batch size of 128.

C. Baselines

We compare our model against several APCG baselines:
PiCoGen2 [3], AMT-APC [4], and Music2MIDI [5]. Further-
more, we include the Human-performed piano cover as an
upper bound for comparison. We also evaluate three versions
of our own system:

« Etude Extractor: The output of our feature Extractor.

2Qur process modifies the original PiCoGen2 method. Instead of performing
beat detection on both audio tracks, we detect beats [21] only on the source
audio. We then find the corresponding timestamps in the cover audio using
the MrMsDTW [23] implementation from the SyncToolbox Python package
[24] before aligning at the measure level.

o Etude - Default: The Decoder’s output using default,
median style attributes.

« Etude - Prompted: The Decoder’s output with manually
selected style prompts for each song.’

D. Objective Metrics

Developing reproducible objective metrics for APCG is
crucial. We propose three novel metrics designed to capture
key dimensions of quality that correlate with human percep-
tion: similarity to the source, rhythmic fluency, and expressive
dynamics.

« Warp Path Deviation (WPD) evaluates the structural
similarity between the generated cover and the origi-
nal song. This metric improves upon the WP-std from
Music2MIDI [5] by calculating the standard deviation
of the residuals from a linear regression of the DTW
warp path. This approach makes WPD robust to global
tempo variations while remaining sensitive to significant
structural misalignments.

« Rhythmic Grid Coherence (RGC) is introduced to eval-
uate rthythmic fluency and detect timing jitter. It quantifies
how well the inter-onset intervals (IOIs) of a performance
adhere to a consistent underlying metrical grid by first
identifying a base tempo unit (7) from the most frequent
IOIs, and then calculating the average deviation from the
grid defined by 7. A lower RGC score indicates a more
rhythmically precise and coherent performance.

« 10I Pattern Entropy (IPE) assesses the dynamic expres-
siveness and complexity of rhythmic patterns. This metric
calculates the Shannon entropy of the distribution of
overlapping n-grams within the generated performance’s
IOI sequence, after the IOIs have been converted into
a series of discrete symbols via k-means clustering. A
higher IPE score suggests more varied and less repetitive
rhythmic motifs.

E. Subjective Evaluation

To complement our objective metrics, we conducted a
subjective listening test with 101 volunteers, who were cat-
egorized into three groups based on their musical experience:
amateurs (<3 years), intermediate (3-10 years), and expert
(>10 years). Each participant was asked to listen to the
original version of a song, followed by seven piano cover ver-
sions presented in a randomized and anonymous order. These
versions included the human performance and the outputs from
the six models listed in Section IV-C. To ensure fairness,
all model-generated MIDI files and the human performance

3While our model supports per-measure style injection, for this evaluation,
a single set of style vectors was applied to the entire piece.



TABLE I
COMPREHENSIVE EVALUATION RESULTS OF HUMAN COMPOSERS, OUR PROPOSED ETUDE MODELS, AND OTHER BASELINES ON BOTH OBJECTIVE AND
SUBJECTIVE METRICS. FOR OBJECTIVE METRICS, WE ALSO SHOW THE DELTA (A) FROM THE HUMAN PERFORMANCE. FOR SUBJECTIVE METRICS,
HIGHER IS BETTER (7).

Model Objective Evaluation Subjective Evaluation (€ [1, 5])
WPD RGC IPE ) FL 1 DE 1 OVL ¢t

Human 0.49 0.042 10.13 375 £ 1.10 4.03 £1.02 3.79 £ 1.06 3.92 + 0.96
Etude - Default 0.21 (A 0.28) 0.020 (A 0.022) 9.02 (A 1.11) 3.16 +£1.07 3.73 £ 098 346 £ 1.05 3.50 + 0.99
Etude - Prompted 0.23 (A 0.26) 0.026 (A 0.016) 9.11 (A 1.02) 3.17 £ 1.10 3.70 & 1.05 3.49 + 1.06 3.46 £+ 1.00
Etude Extractor 0.12 (A 0.37) 0.028 (A 0.014) 10.62 (A 0.49) 341 + 1.01 331 £ 1.13 3.35 £ 1.03 3.33 &+ 1.00
PiCoGen2 [3] 1.00 (A 0.51) 0.059 (A 0.017) 797 (A 2.16) 288 + 1.13 333+ 1.12 273 £ 1.14 297 + 1.04
AMT-APC [4] 0.09 (A 0.40) 0.114 (A 0.072) 10.69 (A 0.56) 2.64 +£0.99 237 £ 1.11 2.71 &£ 1.13 246 + 1.04
Music2MIDI [5]  0.18 (A 0.31) 0.160 (A 0.118) 8.94 (A 1.19) 2.56 + 1.06 2.29 + 1.13 224 +1.09 2.27 £ 1.07

(which was first transcribed to MIDI) were synthesized into
audio using the same piano synthesizer. All audio excerpts
were 60-second clips extracted from the beginning of each
song.

Following the methodology of PiCoGen2 [3], participants
rated each cover on a 5-point Likert scale across four criteria:

o Similarity (SI): How similar the cover is to the original
song in melody, harmony, and rhythm.

o Fluency (FL): The musical coherence and smoothness of
the performance.*

« Dynamic Expression (DE): How human-like and expres-
sive the performance sounds.’

¢ Overall (OVL): How much do the participants like the
piano cover in the personal overall listening experience?

F. Results and Discussion

1) Evaluation Results: The comprehensive results for both
objective and subjective evaluations are presented in Table 1.

The objective metrics reveal that extreme scores are not
always optimal; instead, the human performance provides a
balanced target. For instance, in WPD, the lowest scores were
achieved by models that perform overly literal transcriptions
(Etude Extractor, AMT-APC). Similarly, for RGC, the Etude
Decoder versions (Etude - Default, Etude - Prompted) achieved
the lowest scores, indicating perfect adherence to a metrical
grid, whereas the Human performance showed slightly higher
deviation due to expressive timing. For IPE, the Human perfor-
mance struck a balance between the monotonous patterns of
PiCoGen2 (low IPE) and the chaotic randomness of AMT-
APC (high IPE). This suggests that for objective metrics,
closeness to the human benchmark is a strong indicator of
a well-balanced and high-quality arrangement.

The subjective evaluation results in Table I confirm the supe-
riority of our proposed framework. Statistical analysis reveals
that all three Etude variants significantly outperform all three
baseline models (PiCoGen2, AMT-APC, and Music2MIDI) in

4A low score may indicate issues such as rhythmic errors, missed notes, or
awkward silences that disrupt the musical flow.

SA low score may suggest the performance is mechanical, lifeless, or
emotionally flat.

Overall Quality (OVL), with all planned pairwise comparisons
yielding a corrected p < 0.001.

Diving into the details, the Human performance unsurpris-
ingly achieved the highest scores across all criteria, estab-
lishing a clear upper bound. Among the AI models, both
versions of our Etude Decoder were the top performers, with
Etude - Default achieving the highest OVL score of 3.50.
Notably, our decoder versions also lead in Fluency (FL) and
Dynamic Expression (DE), indicating that their outputs are
perceived as more natural and musical. Meanwhile, the Etude
Extractor achieved the highest Similarity (SI) score among all
models, confirming its effectiveness at capturing a dense and
accurate representation of the source material. These results
provide strong evidence that the Etude framework represents
a substantial advancement in the quality of automatic piano
cover generation.

TABLE 11
DESCRIPTIVE STATISTICS OF THE OVERALL (OVL) SCORES FOR
PARTICIPANT GROUPS BASED ON MUSICAL EXPERIENCE. SCORES ARE
PRESENTED AS MEAN & STANDARD DEVIATION.

Experience Group N  OVL Score
Amateurs (< 3 years) 30 3.32 4+ 0.53
Intermediate (3-10 years) 39  3.09 + 0.50
Expert (> 10 years) 32 3.00 £+ 0.60

2) Analysis of Rater Experience: To validate our subjective
findings, we analyzed the OVL scores by rater experience
(Table II). While a trend emerged where more experienced
listeners gave harsher scores, a statistical test showed that the
difference among the groups was not significant (p = 0.070).
This suggests our main results are robust across listeners with
varying musical expertise.

3) Ablation Study: Our proposed Etude framework intro-
duces significant improvements over prior works in both its
data processing pipeline and model architecture. To disentan-
gle these effects and investigate the primary source of the
performance gains, we conducted an ablation study focusing
on the strongest baseline model, PiCoGen2.

To isolate the impact of the model architecture from the
influence of the dataset, we first trained a new version of



TABLE III
SUBJECTIVE EVALUATION RESULTS FOR THE ABLATION STUDY,
COMPARING THE EFFECTS OF THE DATASET AND MODEL ARCHITECTURE.

Model SIt+ FL1 DE1{ OVL "
Etude - Default (Ours) 3.38 3.53 3.58 3.55
PiCoGen2* (Ours) 3.10 337 326 3.18
PiCoGen2 (Original) 297 3.19 2.63 2.98

the PiCoGen2 model, hereafter referred to as PiCoGen2*,
following its official implementation but using our own high-
quality dataset (detailed in Section IV-A). We then conducted
a separate subjective listening test with 30 new participants.
The experimental setup was identical to our main evaluation
(Section IV-E), including the audio synthesis process and
the four criteria (SI, FL, DE, OVL). The test compared the
following three systems:

« Etude - Default (Ours): Our proposed model trained on
our proposed dataset.

o PiCoGen2* (Ours): The baseline model retrained on our
proposed dataset.

« PiCoGen2 (Original): The official model trained on its
original dataset.

The results of this ablation study are presented in Table III.
The analysis reveals two key findings. First, while retraining
the baseline on our dataset (PiCoGen2*) shows a slight im-
provement over the original PiCoGen2, the difference in OVL
scores was not statistically significant (p = 0.0656). Second,
and more crucially, our Etude - Default model significantly
outperformed PiCoGen2* (p = 0.0007), even when both
were trained on the exact same dataset. This provides strong
evidence that while our data processing pipeline contributes
positively, the primary driver for the substantial performance
gain is the architectural innovations of the Etude framework
itself.

V. CONCLUSION

In this paper, we addressed the key challenges of structural
inconsistency and a lack of stylistic control in Automatic
Piano Cover Generation (APCG). We proposed Etude, a
novel three-stage framework built upon a rigorous data pro-
cessing pipeline. Our approach modularizes the task into
three distinct components—a Beat-Detector, an Extractor, and
a Decoder—and introduces Tiny-REMI, a minimalist and
efficient token representation. This decoupled design simpli-
fies the learning process and, by leveraging a pre-extracted
rhythmic framework, guarantees that the generated output is
structurally consistent with the original song. Furthermore, by
introducing a mechanism for injecting relative style attributes,
our framework enables the generation of stylistically diverse
and controllable piano covers.

Our main contributions include a highly extensible modular
framework, an efficient Tiny-REMI representation that sim-
plifies the learning task, and a novel style injection mecha-
nism for controllable generation. Through extensive subjective

evaluations, our Etude framework was shown to significantly
outperform all state-of-the-art baselines, achieving a quality
that approaches that of human arrangers.

For future work, we observe that the performance of our
framework is fundamentally upper-bounded by the capabili-
ties of its front-end components: the Beat-Detector and the
Extractor. The framework’s structural accuracy is limited by
the precision of the beat tracker, while the Extractor’s process
of flattening the source audio into a single feature stream
can lead to information loss. This limitation is evident in
our subjective results (Table I), where both Etude Decoder
versions scored markedly lower on Similarity (SI) than the
direct Etude Extractor output. We hypothesize this is because
the flattened features make it difficult for the model to iden-
tify the primary melody of the original song, causing the
Decoder to generate incomplete melodic lines. Future work
could thus explore both the integration of more advanced
beat-tracking modules and the development of multi-stream
extractors capable of disentangling different musical sources.
Finally, our work highlights the persistent gap between current
objective metrics and human perception. Developing learnable,
perception-aligned evaluation models could provide a more
reliable and automated benchmark for the field. Overall, the
Etude framework provides a robust foundation for generating
high-quality, controllable piano covers, paving the way for
more musical and interactive Al-powered creative tools.
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